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A new signal processing technique, the directional Wigner distribution (dWD),
is presented to characterize the instantaneous planar motion of a measurement
point in a structure from its transient complex-valued vibration signal. It is proven
that the auto-dWD essentially tracks the shape and directivity of the instantaneous
planar motion, whereas the phase of the cross-dWD indicates its inclination angle.
Finally, the technique is successfully applied to two practical cases: a rotor during
run-up and an automobile engine during crank-on/idling/engine-off.
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1. INTRODUCTION

Spectral analysis using the FFT algorithm is perhaps the most popular signal
processing technique used for monitoring the vibration signals associated with
mechanical failures or faults in machines because the frequency components and
the corresponding amplitudes vary in accordance with various fault mechanisms.
However, when the basic nature of signals changes with time, spectral analysis
often yields poor results due to spectral smearing. Response signal of a rotor as
a function of rotational speed during start-up or shut-down is a good example.
In particular, this approach is not really valid for transient signals resulting from
shaft rubs in journal bearings and spalls in rolling element bearings, if
time-localized spectral results are required. Thus, there has been a great need to
represent time-varying signals in the time–frequency domain. A traditional tool
for the analysis of time-varying signals has been the short-time Fourier transform,
which is commonly called the spectrogram. The spectrogram is typically obtained
by applying a fixed length, moving window to the time-varying data sequence prior
to computing the spectrum. Its length is chosen by considering the tradeoff
between the time and frequency resolutions obtainable. An efficient time–
frequency representation that aims at overcoming the tradeoff problem is the
Wigner distribution (WD) [1–5], which has been widely applied in the areas of
optics [6], speech analysis [7], structure-borne noise identification [8, 9] and
machinery condition monitoring [10–13]. The WD which conventionally deals
with the real valued time-varying signals is well documented in the literature [3],
compared with other joint time–frequency methods. Among others, the major
deficiency of the WD is the so-called presence of interference terms. In addition,
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the WD of discrete time signals suffers from the aliasing problem, which may be
overcome by employing various schemes [2, 14]. In this work, the auto- and
cross-directional Wigner distributions (dWDs) are introduced to account for
complex-valued time varying signals, which represent the planar motion of the
measurement points in structures at each instant of time. The auto- and
cross-dWDs are defined such that they carry the information on the shape and
directivity, and the inclination angle, respectively, of the instantaneous planar
motion. The dWD has the problems and remedies similar to the conventional
Wigner distribution. The aliasing problem and the interference terms between the
forward and backward harmonic components are avoided by transforming a
complex-valued signal into the forward and backward pass analytic signals. The
reduction of the interference terms associated with multiple harmonic components
and the elimination of possible negative values are achieved by convolving the
dWD with a Gaussian window function. A numerical example and two practical
applications are treated to demonstrate the effectiveness of the dWD in
characterizing transient complex-valued signals.

2. COMPLEX NOTATION

In this section, the convention for representing complex signals will be
established and the complex harmonic components as phasors rotating in a
complex plane considered [15–17]. Let one first consider a pair of complex
conjugate signals, p(t) and p̄(t), of the form

p(t)= y(t)+ jz(t), p̄(t)= y(t)− jz(t), (1)

where y(t) and z(t) are the real signals, j (=z−1) means the imaginary number
and the bar denotes the complex conjugate. It is then natural to associate the
complex signal p(t) with a moving point, or a moving vector drawn from the
origin, in the plane whose cartesian co-ordinates are y(t) and z(t). By displaying
the complex signal p(t) geometrically in the complex plane, the y-axis becomes the
real axis, the z-axis being the imaginary axis, as indicated in Figure 1. The complex
harmonic signal p(t) of frequency v can be rewritten in polar form, using Euler’s
formula [15], as

p(t)= pf(t)+ pb(t)= r f ejvt + rb e−jvt

= {1
2(yc + zs )+ (j/2)(zc − ys )} ejvt + {1

2(yc − zs )+ (j/2)(zc + ys )} e−jvt, (2)

where, r f = =r f= ejff, rb = =rb= ejfb, and using the relation p(t)= y(t)+ jz(t),

y(t)= yc cos vt+ ys sin vt, z(t)= zc cos vt+ zs sin vt. (3)

Here the superscripts b and f denote the backward (clockwise) and forward
(counter-clockwise in Figure 1), and, yc and ys (zc and zs ) are the Fourier
coefficients associated with y(t)(z(t)). Note that the complex term ejvt (e−jvt) is
associated with the forward (backward) rotating unity vector at the circular
rotating speed of v and that the complex quantity r f (rb) is associated with the
vector having the amplitude, =r f= (=rb=), and the initial phase, f f (fb). It is well known
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Figure 1. Representation of a complex-valued signal as the sum of two contra-rotating vectors.

that the complex harmonic signal, which is the resultant of two contra-rotating
vectors, each with different amplitudes and initial phases, forms an ellipse in the
complex plane [15]. The shape and directivity of the elliptic planar motion are
determined as follows:

r f (rb)=0: backward (forward) circular planar motion,

=rb=q =r f=: backward elliptic planar motion,

=rb== =r f=: straight line motion, =rb=Q =r f=: forward elliptic planar motion. (4)

To quantify the above shape and directivity information, the shape and directivity
index (SDI) is introduced and defined as

−1E SDI= (=r f=− =rb=)/(=r f=+ =rb=)E 1 (5)

where the inequality relations can be easily proven. Note that

SDI=−1: backward circular planar motion,

−1Q SDIQ 0: backward elliptic planar motion,

SDI=0: straight line motion,

0Q SDIQ 1: forward elliptic planar motion,

SDI=1: forward circular planar motion.

In other words, the sign of the SDI determines the directivity and the absolute
value of the SDI indicates the roundness (the correlation coefficient to a circle).

The inclination angle finc of the ellipse made by the major axis of the ellipse with
respect to the y-axis is obtained as

finc = 1
2(f

f +fb). (6)

Therefore, in order to identify the parameters of the elliptic planar motion, one
needs to acquire the shape, directivity and inclination angle of the planar motion.
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3. HILBERT TRANSFORM

3.1. 

The conventional analytic signal associated with a real signal is defined such that
its imaginary part is the Hilbert transform of the real signal, so that its spectrum
is zero over the negative (backward) frequency region [18]. The use of the
conventional analytic signal can be considered as the forward pass transformation
of the original real signal in the sense that it only passes the forward (positive)
harmonic components. The backward pass transformation can be similarly
designed by using the complex conjugate of the analytic signals. When one deals
with real signals, the forward and backward pass transformations result in
identical spectra except the sign of frequency. But the spectrum of a
complex-valued signal, in general, shows the two-sided frequency contents, which
are different over the positive and negative frequency ranges. Therefore, it is
necessary to define the forward and backward pass analytic signals of a
complex-valued signal.

Since the Hilbert transform is a linear operator, the Hilbert transform of a
complex-valued signal p(t) is another complex-valued signal p̃(t), i.e.

p̃(t)=g
a

−a

p(u)
p(t− u)

du= p(t)*(1/pt). (7)

The above Hilbert transform is the convolution of the complex signal p(t) with
1/(pt). Let P	 (v) denotes the Fourier transform of p̃(t), then according to the
convolution theorem,

P	 (v)=P(v)B(v). (8)

where B(v) is the Fourier transform of 1/(pt), i.e.,

B(v)=−j sgn (v), (9)

with

sgn (v)= 8 1,
0,

−1,

for vq 0,
for v=0,
for vQ 0,9

The magnitude and the phase shift of B(v) are found to be

=B(v)==1, fB (v)=6 p/2
−p/2

for vq 0
for vQ 0,7 (10)

implying that B(v) is a 90° phase shift system. Hence, the Hilbert transformed
signal can be obtained by multiplying positive and negative frequency components
by −j and j, respectively, in the frequency domain.
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3.2.     - 

An analytic signal associated with a complex-valued signal can be defined so
that it consists of the complex-valued original signal and its Hilbert transformed
signal. With a time signal p(t) and its Hilbert transform p̃(t), the forward and
backward pass analytic signals, pf(t) and pb(t), associated with p(t) can be defined
as

pf(t)= {p(t)+ jp̃(t)}/2, pb(t)= {p(t)− jp̃(t)}/2. (11)

The corresponding Fourier transforms, Pf(v) and Pb(v) become

Pf(v)= [P(v)+ sgn (v)P(v)]/2= 8 P(v),
P(v)/2,

0,

for vq 0,
for v=0,
for vQ 0,9 (12a)

Pb(v)= 8 0,
P(v)/2,
P(v),

for vq 0,
for v=0,
for vQ 0.9 (12b)

Note that the forward (backward) pass analytic signal only includes the positive
(negative) frequency components.

4. DIRECTIONAL WIGNER DISTRIBUTION

4.1.   

In this section, the conventional Wigner distribution is extended to account for
complex-valued signals by introducing dWD, and the properties of dWD are
examined.

By simply replacing the real-valued signal in the conventional definition of WD
by the complex-valued signal, one may define the auto- and cross-WDs, Wp (t, v)
and Wp̄,p (t, v) of a complex-valued signal p(t)= y(t)+ jz(t)= pf(t)+ pb(t) as in
reference [2] as

Wp (t, v)=Wp,p (t, v)=g
a

−a

e−jvtp̄0t− t

21p0t+ t

21 dt

=Wp f,p f(t, v)+Wpb,pb(t, v)+Wp f,pb(t, v)+Wpb,p f(t, v), (13a)

Wp̄,p (t, v)=g
a

−a

e−jvtp0t− t

21p0t+ t

21 dt

=Wp̄ f,pb(t, v)+Wp̄b,p f(t, v)+Wp̄ f,p f(t, v)+Wp̄b,pb(t, v), (13b)

where Wp f,p f(t, v) and Wpb,pb(t, v) (Wp̄´f,pb(t, v) and Wp̄b,p f(t, v)) contain, in addition
to the desired signal terms, the undesired interference terms between
multi-harmonic components. On the other hand, Wp f,pb(t, v) and Wpb,p f(t, v)
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(Wp̄ f,p f(t, v) and Wp̄b,pb(t, v)) are the interference terms between the forward and
backward harmonic components. Note that by definition, the Wigner kernels
p̄(t− t/2)p(t+ t/2) and p(t− t/2)p(t+ t/2) are the conjugate even and even
functions of t, respectively. Especially, from definition (13), it holds

Wp (t, v)=W� p (t, v), Wp̄,p (t, v)=Wp̄,p (t, −v)=W� p,p̄ (t, v). (14a, b)

In other words, the auto-WD, which is the Fourier transform of the conjugate even
Wigner kernel with respect to t, is real, but not always positive, whereas the
cross-WD, which is the Fourier transform of the even Wigner kernel with respect
to t, is an even, but not real in general, function of v.

On the other hand, the auto- and cross-dWDs of a complex-valued signal p(t)
are defined with the forward and backward pass analytic signals, respectively, as

W d
p (t, v)=

~
_

Wp f(t, v)
Wpb(t, v)

=
g

a

−a

e−jvtp̄ f0t− t

21pf0t+ t

21 dt,

g
a

−a

e−jvtp̄b0t− t

21pb0t+ t

21 dt,

for vq 0,

for vQ 0,
g
G

G

G

G

F

f
(15a)

W d
p̄,p (t, v)=Wp̄b,p f(t, v)=g

a

−a

e−jvtpb0t− t

21pf0t+ t

21 dt, for all v, (15b)

which state that by separating the backward or forward components, one can
remove the interference terms between the forward and backward components.
Thus, for complex-valued signals, the dWDs defined in equation (15) are far less
contaminated by undesired interference terms than the WDs in equation (13). In
addition, the dWD defined by using the analytic signal can eliminate the aliasing
problem [5].

To demonstrate some important properties of auto- and cross-dWDs, one
considers a complex chirp signal, whose instantaneous frequency increases linearly
with time; i.e.,

p(t)= r f ejat2/2 + rb e−jat2/2, (16)

where r f = =r f= ejff, rb = =rb= ejfb. Here a is a constant. From equation (15), one
obtains the corresponding auto-dWD as

W d
p (t, v)=62p{=r f=2d(v− at)},

2p{=rb=2d(v+ at)},
for vq 0,
for vQ 0.7 (17)

It implies that the auto-dWD of the complex chirp signal is concentrated at any
instant around the instantaneous forward (positive) and backward (negative)
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frequencies, +at and −at, respectively, in the time–frequency plane. This is one
of the main motivations for its use. On the other hand, the cross-dWD becomes

W d
p̄,p (t, v)=2p{=r f>rb= ejff ejfb[d(v− at)]}. (18)

Note that the auto- and cross-dWDs remove the undesired interference term
between the forward and backward components. The instantaneous inclination
angle can be defined, from the phase of the cross-dWD, as

tan {2finc (t, v)}=Im {W d
p̄,p (t, v)}/Re {W d

p̄,p (t, v)}. (19)

Thus, the instantaneous inclination angle can be expressed as

finc (t, v)= 1
2[f

f +fb]. (20)

4.2.    

Even if the dWD is theoretically attractive, the practical application of the dWD
is often restricted by the presence of the interference terms. An improvement in
the attenuation of interference terms can be made by the convolution with a
smoothing function in the time-frequency domain [3, 19]. The Gaussian window
function is commonly used as a smoothing function:

G(t, v)= (2pstsw )−1 exp[−(t2/2s2
t +v2/2s2

v)], (21)

where the positive constants st =MDt and sv =NDv indicate the extent of
smoothing in the time and frequency directions, Dt and Dv denote the
corresponding resolutions, respectively, and, M and N are the integer numbers.
The smoothed auto- and cross-dWDs can be defined as

W	 d
p (t, v)=

1
2p g

a

−a g
a

−a

W d
p (t', v')G(t− t', v−v') dt' dv', (22a)

W	 d
p̄,p (t, v)=

1
2p g

a

−a g
a

−a

W d
p̄,p (t', v')G(t− t', v−v') dt' dv'. (22b)

Note that the smoothing operation yields the positive smoothed dWD when
stsv e 0·5 [20]. Unfortunately, this attenuation of interference terms comes at the
cost of a loss of time–frequency concentration. Therefore, there exists a
fundamental tradeoff between good interference terms attenuation and good
time–frequency concentration. Also, the smoothed dWD tends to lose most of the
attractive mathematical properties of the defined dWD [3].

One can also define the instantaneous SDI of the time varying complex
harmonic component by using the smoothed auto-dWD, i.e.,

−1E SDI(t)= (=r f(t)=− =rb(t)=)/(=r f(t)=+ =rb(t)=)E 1, (23)

where

=r f(t)==X 1
2p g

v2

v1

W	 d
p (t, v) dv , =rb(t)==X 1

2p g
−v1

−v2

W	 d
p (t, −v) dv .
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Here v1 and v2 form a frequency band near the spectral peak of interest. Note
that the implication of the above relation is similar to equation (5).

5. AN ILLUSTRATIVE EXAMPLE

To demonstrate the characteristics of time-varying complex-valued signal by
using the dWDs, a linear chirp (frequency sweep) signal is taken as an example
here, which is given by

p(t)=2 ej30° sin (2pt/5·12) ej(v1t2/2+ b1t) + 0·5 ej10° sin (2pt/5·12) e−j(v1t2/2+ b1t)

+ ej35·16°t ej(v2t2/2+ b2t) + 1·5 e−j(v2t2/2+ b2t), (24)

with v1 =8p, v2 =16p, b1 =6p, b2 =12p. The signal was sampled at 100 Hz and
the 512 complex valued data was processed to calculate the dWDs. Figure 2 shows
the contour plots of the conventional auto-WD and auto-dWD with the same
contour levels. Note that the conventional auto-WD is contaminated not only by
the interference terms between forward and backward components, but by the
interference terms between signal terms, whereas the auto-dWD shows only the
interference terms between signal terms. As shown in Figure 3(a), the smoothed
auto-dWD gives not only the accurate variation of the signal frequency with time
but also the shape and directivity of the elliptic motions associated with each
harmonic components in the complex plane. Figure 3(b) shows the SDI values
associated with the fundamental and second harmonic components. Note that the
second harmonic component forms a backward, thin elliptic planar motion, since
its SDI value is about −0·2. Figure 3(c), which was computed from the phase of
the smoothed cross-dWD, represents the inclination angles of the instantaneous
elliptic motions associated with the two harmonic components. The errors in
results near the beginning and end portions of the signal are mainly caused by the
short length of the estimated time-dependent Wigner kernel.

Figure 2. Conventional (a) and directional auto-WDs (b) of complex-valued linear chirp signal;
fS =100 Hz; N=512.
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Figure 3. (a) Smoothed auto-dWD, (b) SDI and (c) inclination angle of complex-valued linear
chirp signal; fS =100 Hz; N=512; st =20Dt ; sv =20Dv . Key: ——, first component; ——, second
component.

6. APPLICATION OF dWD TO ROTOR RUN-UP TEST

An anisotropic rotor system possesses the non-axisymmetric properties in its
supporting stationary structure. The anisotropy in stiffness and damping of the
support is known to produce elliptic whirl due to imbalance, which may be
forward (the same direction as the rotor rotation) or backward (the opposite
direction to the rotor rotation) [15]. With light damping, the synchronous
backward whirl often occurs when the rotor system is operated between two very
closely spaced resonant speeds. It makes the shaft undergo two reversals in stress
per revolution, so that it may significantly contribute to shaft fatigue.
Consequently, in anisotropic rotor systems, it is important to identify the
backward whirl between the two split critical speeds.
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Figure 4. Experimental setup for rotor run-up test.

One of the most common ways to check the synchronous whirling direction, is
to run the rotor at a constant speed, while the rotor speed is incremented by a
fixed amount. Thus it requires many repeated test runs. Another quick test method
is the use of the automatically tuned filter to the rotor speed during run-up or coast
down. However, as the sweep rate increases, the spectral bandwidth increases and
the frequency resolution decreases. As an alternative, use of smoothed dWD of
transient complex signal during run-up is proposed to identify the backward
synchronous whirl including the shape and inclination angle of the whirl orbit.

Figure 4 is the schematic of the laboratory test rig (Bently Nevada rotor kit:
Model 24755). The test rig consists of one rigid disk and two bearing support
pedestals. The outboard pedestal uses a preload frame to generate the stiffness

Figure 5. Vibration signals and whirl orbits of rotor during sweeping up from 2200 r.p.m. to
2460 r.p.m. with a constant acceleration rate. (a) y-axis; (b) z-axis; (c) whirling orbits.
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asymmetry effect in the rig. The lateral vibrations adjacent to the outboard
pedestal are measured by a pair of eddy current type proximity probes. The rotor
system is driven by an electric motor incorporated with the tacho feedback
through a flexible coupling. The recorded signals are filtered prior to A/D
conversion using the low-pass filters with a nominal cut-off frequency of 200 Hz,
and then sampled at a rate of 400 Hz. Each data set consists of 1024 data points.

Figure 5 shows the displacement–time histories and the whirl orbits in the
neighborhood of the two critical speeds, when the rotating speed of the rotor is
swept up from 2200 r.p.m. to 2460 r.p.m. with a constant acceleration rate. The
time histories show that the y-axis critical speed is lower than the z-axis critical
speed, so that the y displacement reaches its maximum amplitude first. Whirl orbits

Figure 6. Rotor run-up test; fS =400 Hz; N=1024; st =20Dt ; sv =20Dv . (a) Smoothed
auto-dWD; (b) SDI of IX component; (c) Inclination angle of IX component.
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versus running time show the presence of the backward whirl between 0·7 s and
1·75 s. Especially, at about 0·7 s running time, the orbits are collapsed into a
straight line. At higher speeds, the whirl orbit begins to collapse again at about
1·75 s. These events are necessary for the change of whirling direction from the
continuity point of view. It can also be seen from the whirl orbits that the major
axis of orbits becomes inclined increasingly from the y-axis to the z-axis.

Figure 6 shows the smoothed auto-dWD, and the instantaneous SDI and
inclination angle of 1X (synchronous to the rotational speed) component. It can
be seen that the smoothed auto-dWD in Figure 6(a) well represents the time for
backward whirl, its frequency components, and the shape of the instantaneous
orbit. The smoothed auto-dWD shows that the two critical speeds are in the
neighborhood of 2280 r.p.m. and 2390 r.p.m., respectively. SDI in Figure 6(b)
clearly shows the shape and directivity of the instantaneous whirling orbit, and
Figure 6(c) represents the instantaneous angle of 1X component made by the
major axis of the orbits with y-axis. As shown in the time histories, response
signals contain almost mono-component, that is, synchronous component,
because the rotor operates at the neighborhood of critical speeds. Thus the
resulting smoothed dWDs have little effects of the interference terms between
multiple harmonic components, and make interpretation effective.

7. APPLICATION OF dWD TO TRANSIENT ENGINE VIBRATION TEST

A point of interest on an engine in operation will generally vibrate in
three-dimensional space, making a complicated trajectory. The projected
trajectory on an arbitrary plane can then be properly defined as a complex-valued
signal. The dWD of the transient complex-valued signal representing the
instantaneous planar motion, is utilized to characterize the transient engine
vibration.

Experiments were carried out using a vehicle equipped with a four-stroke
four-cylinder in-line spark ignition engine. The engine was run long enough to
achieve steady state before the test. A triaxial accelerometer positioned at the

Figure 7. Experimental set-up and the co-ordinate system for engine vibration test.
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Figure 8. Trajectories of the transient engine vibrations during the crank-on/idling/engine-off. (a)
Longitudinal, x direction; (b) lateral, y direction; (c) vertical (bounce), z direction.

midpoint of the top of the engine block was used to measure the vibrations in the
three perpendicular directions,x, y and z, as shown inFigure 7. The vibration signals
were low-pass filtered to prevent the aliasing and subsequently sampled at a rate of
220 Hz through a 12-bit A/D converter. The transient engine vibration signal was
obtained during crank-on/idling/engine-off, where each data set consists of 1024
data points.

An engine body is generally treated as a rigid body with six-degree-of-freedom
motions, consisting of the longitudinal, lateral and vertical (bounce) motions and
the roll, pitch and yaw motions, as shown in Figure 7. With the measurement in the
x, y and z directions, one can define three different planar motions, one of which
can always be regenerated from the other two. For the sake of convenience, only
the rolling planar motion is dealt with by introducing the complex-valued signal
r(t)= z(t)+ jx(t).

Figure 8 shows the transient engine vibrations during crank-on/idling/engine-off.
The time histories show not only an abrupt shake of typical engine body during
crank-on and engine-offbut also some idling state. This figure shows that the vertical
(bounce) and longitudinal vibrations are larger than the lateral vibration. Figure 9

Figure 9. Trajectories of the transient engine vibrations during the crank-on/idling/engine-off.
Frontal plane (r= z+jx).
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Figure 10. Smoothed auto-dWD of the transient engine vibrations during the crank-on/idling/en-
gine-off; fS =220 Hz; N=1024; st =10Dt ; sv =10Dv . Frontal plane (r= z+jx): (a) waterfall plot;
(b) contour plot.

shows the instantaneous trajectories of the transient engine vibrations in Figure 8.
The rotation direction of trajectories shown in Figure 9 indicates the rotation
direction of the crank shaft. Although the trajectories indicate the shape,
directivity, and inclination angle of the instantaneous planar motion, they do not
give accurate information of the variation of the signal frequency with time.

In order to track the shape and directivity of the transient engine vibration, the
resulting three-dimensional waterfall and the contour plots of smoothed
auto-dWD are displayed in Figures 10(a) and 10(b), respectively. These figures
show that as soon as crank-on ends, the engine speed jumps up to about
1500 r.p.m., and then slowly decreases down to the idling speed of 820 r.p.m.
Figure 11 shows the instantaneous SDI and inclination angle of the motion
synchronous to firing frequency, which was readily obtained from the auto-dWD
and cross-dWD, respectively. The same results may also be obtained directly from
Figure 9, but the calculation is quite involved. Note that the inclination angle as
well as the vibration amplitude abruptly change at the onset of engine-off.
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Figure 11. (a) Instantaneous SDI and (b) inclination angle of the dominant transient engine
vibration during the crank-on/idling/engine-off by smoothed dWDs; fS =220 Hz; N=1024;
st =20Dt ; sv =20Dv . F, Forward; B, backward.

8. CONCLUSIONS

Transient vibration signal processing method is proposed utilizing auto- and
cross-dWDs of time-varying complex-valued signal representing the instantaneous
planar motion. The experimental results for characterization of time-varying
complex-valued signals show that the shape, directivity, and inclination angle of
instantaneous planar motion can be effectively identified by using the smoothed
auto-and cross-dWDs, respectively.
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